*** Welcome to piglix ***

Ultra-wideband


Ultra-wideband (also known as UWB, ultra-wide band and ultraband) is a radio technology pioneered by Robert A. Schorton, and others, that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precision locating and tracking applications.

Unlike spread spectrum, UWB transmits in a manner that does not interfere with conventional narrowband and carrier wave transmission in the same frequency band.

Ultra-wideband is a technology for transmitting information spread over a large bandwidth (>500 MHz); this should, in theory and under the right circumstances, be able to share spectrum with other users. Regulatory settings by the Federal Communications Commission (FCC) in the United States intend to provide an efficient use of radio bandwidth while enabling high-data-rate personal area network (PAN) wireless connectivity; longer-range, low-data-rate applications; and radar and imaging systems.

Ultra wideband was formerly known as pulse radio, but the FCC and the International Telecommunication Union Radiocommunication Sector (ITU-R) currently define UWB as an antenna transmission for which emitted signal bandwidth exceeds the lesser of 500 MHz or 20% of the arithmetic center frequency. Thus, pulse-based systems—where each transmitted pulse occupies the UWB bandwidth (or an aggregate of at least 500 MHz of narrow-band carrier; for example, orthogonal frequency-division multiplexing (OFDM)—can access the UWB spectrum under the rules. Pulse repetition rates may be either low or very high. Pulse-based UWB radars and imaging systems tend to use low repetition rates (typically in the range of 1 to 100 megapulses per second). On the other hand, communications systems favor high repetition rates (typically in the range of one to two gigapulses per second), thus enabling short-range gigabit-per-second communications systems. Each pulse in a pulse-based UWB system occupies the entire UWB bandwidth. This allows UWB to reap the benefits of relative immunity to multipath fading, unlike carrier-based systems which are subject to deep fading and intersymbol interference. However, both systems are susceptible to intersymbol interference.


...
Wikipedia

...