*** Welcome to piglix ***

UltraSPARC T1

UltraSPARC T1
Ultrasparc t1 micrograph.JPG
Sun UltraSPARC T1 (Niagara 8 Core)
Produced 2005
Designed by Sun Microsystems
Common manufacturer(s)
Max. CPU clock rate 1.0 GHz to 1.4 GHz
Instruction set SPARC V9
Cores 4, 6, 8
Successor UltraSPARC T2
Core name(s)
  • S1

Sun Microsystems' UltraSPARC T1 microprocessor, known until its 14 November 2005 announcement by its development codename "Niagara", is a multithreading, multicore CPU. Designed to lower the energy consumption of server computers, the CPU typically uses 72 W of power at 1.4 GHz.

Afara Websystems pioneered a radical thread-heavy SPARC design. The company was purchased by Sun, and the intellectual property became the foundation of the CoolThreads line of processors, starting with the T1. The T1 is a new-from-the-ground-up SPARC microprocessor implementation that conforms to the UltraSPARC Architecture 2005 specification and executes the full SPARC V9 instruction set. Sun has produced two previous multicore processors (UltraSPARC IV and IV+), but UltraSPARC T1 is its first microprocessor that is both multicore and multithreaded. The processor is available with four, six or eight CPU cores, each core able to handle four threads concurrently. Thus the processor is capable of processing up to 32 threads concurrently.

UltraSPARC T1 can be partitioned in a similar way to high-end Sun SMP systems. Thus, several cores can be partitioned for running a single or group of processes and/or threads, while the other cores deal with the rest of the processes on the system.

The UltraSPARC T1 was designed from scratch as a multi-threaded, special-purpose processor, and thus introduces a whole new architecture for obtaining high performance. Rather than try to make each core as intelligent and optimized as they can, Sun's goal was to run as many concurrent threads as possible, and maximize utilization of each core's pipeline. The T1's cores are less complex than those of current high end processors in order to allow 8 cores to fit on the same die. The cores do not feature out-of-order execution, or a sizable amount of cache.


...
Wikipedia

...