Warp-field experiments are a series of current and proposed experiments to create and detect instances of spacetime warping. The ultimate goal is to prove or disprove the possibility of spacetime metric engineering with reasonable amounts of energy.
Spacetime metric engineering is a requirement for physically recreating solutions of general relativity such as Einstein–Rosen bridges or the Alcubierre drive. Current experiments focus on the Alcubierre metric and its modifications. Alcubierre's work from 1994 implies that even if the required exotic matter with negative energy densities can be created, the total mass–energy demand for his proposed warp drive would exceed anything that could be realistically attained by human technology. Other researchers aimed to improve the energy efficiency (see Alcubierre drive: Difficulties), however the propositions remain mostly speculative. Research groups at NASA's Johnsons Space Center and Dakota State University currently aim to experimentally evaluate several new approaches, especially a redesigned energy-density topology as well as an implication of brane cosmology theory. If space actually were to be embedded in higher dimensions, the energy requirements could be decreased dramatically and a comparatively small energy density could already lead to a spacetime curvature measurable using an interferometer. The theoretical framework for the experiments dates back to work by Harold G. White from 2003 as well as work by White and Eric W. Davis from 2006 that was published in the AIP, where they also consider how baryonic matter could, at least mathematically, adopt characteristics of dark energy (see section below). In the process, they described how a toroidal positive energy density may result in a spherical negative-pressure region, possibly eliminating the need for actual exotic matter.