*** Welcome to piglix ***

Weyl algebra


In abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients (in one variable), namely expressions of the form

More precisely, let F be the underlying field, and let F[X] be the ring of polynomials in one variable, X, with coefficients in F. Then each fi lies in F[X].

X is the derivative with respect to X. The algebra is generated by X and X .

The Weyl algebra is an example of a simple ring that is not a matrix ring over a division ring. It is also a noncommutative example of a domain, and an example of an Ore extension.

The Weyl algebra is isomorphic to the quotient of the free algebra on two generators, X and Y, by the ideal generated by the element

The Weyl algebra is the first in an infinite family of algebras, also known as Weyl algebras. The n-th Weyl algebra, An, is the ring of differential operators with polynomial coefficients in n variables. It is generated by Xi and Xi, i = 1, ..., n.

Weyl algebras are named after Hermann Weyl, who introduced them to study the Heisenberg uncertainty principle in quantum mechanics. It is a quotient of the universal enveloping algebra of the Heisenberg algebra, the Lie algebra of the Heisenberg group, by setting the central element of the Heisenberg algebra (namely [X,Y]) equal to the unit of the universal enveloping algebra (called 1 above).


...
Wikipedia

...