*** Welcome to piglix ***

X-machine


The X-machine (XM) is a theoretical model of computation introduced by Samuel Eilenberg in 1974. The X in "X-machine" represents the fundamental data type on which the machine operates; for example, a machine that operates on databases (objects of type database) would be a database-machine. The X-machine model is structurally the same as the finite state machine, except that the symbols used to label the machine's transitions denote relations of type XX. Crossing a transition is equivalent to applying the relation that labels it (computing a set of changes to the data type X), and traversing a path in the machine corresponds to applying all the associated relations, one after the other.

Eilenberg's original X-machine was a completely general theoretical model of computation (subsuming the Turing machine, for example), which admitted deterministic, non-deterministic and non-terminating computations. His seminal work published many variants of the basic X-machine model, each of which generalized the finite state machine in a slightly different way.

In the most general model, an X-machine is essentially a "machine for manipulating objects of type X". Suppose that X is some datatype, called the fundamental datatype, and that Φ is a set of (partial) relations φ: X → X. An X-machine is a finite state machine whose arrows are labelled by relations in Φ. In any given state, one or more transitions may be enabled if the domain of the associated relation φi accepts (a subset of) the current values stored in X. In each cycle, all enabled transitions are assumed to be taken. Each recognised path through the machine generates a list φ1 ... φn of relations. We call the composition φ1o ... o φn of these relations the path relation corresponding to that path. The behaviour of the X-machine is defined to be the union of all the behaviours computed by its path relations. In general, this is non-deterministic, since applying any relation computes a set of outcomes on X. In the formal model, all possible outcomes are considered together, in parallel.


...
Wikipedia

...