X-ray pulsar-based navigation and timing (XNAV) is a theoretical navigation technique whereby the periodic X-ray signals emitted from pulsars are used to determine the location of a vehicle, such as a spacecraft in deep space. A vehicle using XNAV would compare received X-ray signals with a database of known pulsar frequencies and locations. Similar to GPS, this comparison would allow the vehicle to triangulate its position accurately (±5 km). The advantage of using X-ray signals over radio waves is that X-ray telescopes can be made smaller and lighter.
SEXTANT (Station Explorer for X-ray Timing and Navigation Technology) is a NASA-funded project being developed at the Goddard Space Flight Center that will test XNAV on-orbit on board the International Space Station in connection with the NICER project. It is currently planned for 2017.
On 9 November 2016 the Chinese Academy of Sciences launched an experimental pulsar navigation satellite called XPNAV 1. XPNAV-1 will characterize 26 nearby pulsars for their pulse frequency and intensity to create a navigation database that could be used by future operational missions. The satellite is expected to operate for five to ten years. XPNAV-1 is the first pulsar navigation mission launched into orbit.
In 2014, a feasibility study was carried out by the National Aerospace Laboratory of Amsterdam, for use of pulsars in place of GPS in navigation. The advantage of pulsar navigation would be more available signals than from satnav constellations, being unjammable, with the broad range of frequencies available, and security of signal sources from destruction by antisatellite weapons.