*** Welcome to piglix ***

XTS mode


Disk encryption is a special case of data at rest protection when the storage media is a sector-addressable device (e.g., a hard disk). This article presents cryptographic aspects of the problem. For discussion of different software packages and hardware devices devoted to this problem see disk encryption software and disk encryption hardware.

Disk encryption methods aim to provide three distinct properties:

The first property requires defining an adversary from whom the data is being kept confidential. The strongest adversaries studied in the field of disk encryption have these abilities:

A method provides good confidentiality if the only information such an adversary can determine over time is whether the data in a sector has or has not changed since the last time they looked.

The second property requires dividing the disk into several sectors, usually 512 bytes (4096 bits) long, which are encrypted and decrypted independently of each other. In turn, if the data is to stay confidential, the encryption method must be tweakable; no two sectors should be processed in exactly the same way. Otherwise, the adversary could decrypt any sector of the disk by copying it to an unused sector of the disk and requesting its decryption.

The third property is generally non-controversial. However, it indirectly prohibits the use of stream ciphers, since stream ciphers require, for their security, that the same initial state not be used twice (which would be the case if a sector is updated with different data); thus this would require an encryption method to store separate initial states for every sector on disk—seemingly a waste of space. The alternative, a block cipher, is limited to a certain block size (usually 128 or 256 bits). Because of this, disk encryption chiefly studies chaining modes, which expand the encryption block length to cover a whole disk sector. The considerations already listed make several well-known chaining modes unsuitable: ECB mode, which cannot be tweaked, and modes that turn block ciphers into stream ciphers, such as the CTR mode.


...
Wikipedia

...