X chromosome | |
---|---|
Human X chromosome (after G-banding).
|
|
X chromosome in human male karyogram.
|
|
Features | |
Length (bp) | 156,040,895 |
No. of genes | 1,805 |
Type | Allosome |
Centromere position | Submetacentric |
Identifiers | |
RefSeq | NC_000023 |
GenBank | CM000685 |
The X chromosome is one of the two sex-determining chromosomes (allosomes) in many animal species, including mammals (the other is the Y chromosome), and is found in both males and females. It is a part of the XY sex-determination system and X0 sex-determination system. The X chromosome was named for its unique properties by early researchers, which resulted in the naming of its counterpart Y chromosome, for the next letter in the alphabet, after it was discovered later.
The X chromosome in humans spans more than 153 million base pairs (the building material of DNA). It represents about 2000 out of 20,000 - 25,000 genes. Each person usually has one pair of sex chromosomes in each cell. Females have two X chromosomes, whereas males have one X and one Y chromosome. Both males and females retain one of their mother's X chromosomes, and females retain their second X chromosome from their father. Since the father retains his X chromosome from his mother, a human female has one X chromosome from her paternal grandmother (father's side), and one X chromosome from her mother. This inheritance pattern follows the Fibonacci numbers at a given ancestral depth.
Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. The X chromosome contains about 2000 genes compared to the Y chromosome containing 78 genes, out of the estimated 20,000 to 25,000 total genes in the human genome. Genetic disorders that are due to mutations in genes on the X chromosome are described as X linked.
The X chromosome carries a couple of thousand genes but few, if any, of these have anything to do directly with sex determination. Early in embryonic development in females, one of the two X chromosomes is randomly and permanently inactivated in nearly all somatic cells (cells other than egg and sperm cells). This phenomenon is called X-inactivation or Lyonization, and creates a Barr body. If X-inactivation in the somatic cell meant a complete de-functionalizing of one of the X-chromosomes, it would ensure that females, like males, had only one functional copy of the X chromosome in each somatic cell. This was previously assumed to be the case. However, recent research suggests that the Barr body may be more biologically active than was previously supposed.