In quantum mechanics, counterfactual definiteness (CFD) is the ability to speak "meaningfully" of the definiteness of the results of measurements that have not been performed (i.e., the ability to assume the existence of objects, and properties of objects, even when they have not been measured). The term "counterfactual definiteness" is used in discussions of physics calculations, especially those related to the phenomenon called quantum entanglement and those related to the Bell inequalities. In such discussions "meaningfully" means the ability to treat these unmeasured results on an equal footing with measured results in statistical calculations. It is this (sometimes assumed but unstated) aspect of counterfactual definiteness that is of direct relevance to physics and mathematical models of physical systems and not philosophical concerns regarding the meaning of unmeasured results.
The single adjective "counterfactual" may also appear in physics discussions where it is frequently treated as a noun. The word "counterfactual" does not mean "characterized by being opposed to fact." Instead, it characterizes values that could have been measured but, for one reason or another, were not.
The subject of counterfactual definiteness receives attention in the study of quantum mechanics because it is argued that, when challenged by the findings of quantum mechanics, classical physics must give up its claim to one of three assumptions: locality (no "spooky action at a distance"), counterfactual definiteness (or "non-contextuality"), and no conspiracy (called also "asymmetry of time").
If physics gives up the claim to locality, it brings into question our ordinary ideas about causality and suggests that events may transpire at faster-than-light speeds.
If physics gives up the "no conspiracy" condition, it becomes possible for "nature to force experimenters to measure what she wants, and when she wants, hiding whatever she does not like physicists to see."
If physics rejects the possibility that, in all cases, there can be "counterfactual definiteness," then it rejects some features that humans are very much accustomed to regarding as enduring features of the universe. "The elements of reality the EPR paper is talking about are nothing but what the property interpretation calls properties existing independently of the measurements. In each run of the experiment, there exist some elements of reality, the system has particular properties < #ai > which unambiguously determine the measurement outcome < ai >, given that the corresponding measurement a is performed."