Link protection is designed to safeguard networks from failure. Failures in high-speed networks have always been a concern of utmost importance. A single fiber cut can lead to heavy losses of traffic and protection-switching techniques have been used as the key source to ensure survivability in such networks. Survivability can be addressed in many layers in a network and protection can be performed at the physical layer (SONET/SDH, Optical Transport Network), Layer 2 (Ethernet, MPLS) and Layer 3 (IP).
Protection architectures like Path protection and Link protection safeguard the above-mentioned networks from different kinds of failures. In path protection, a backup path is used from the source to its destination to bypass the failure. In Link protection, the end nodes of the failed link initiate the protection. These nodes detect the fault and are responsible to initiate the protection mechanisms in order to detour the affected traffic from the failed link onto predetermined reserved paths. Other types of protection are channel-, segment- and p-cycle protection.
In older high-speed transport networks, the SONET layer (also SDH) was the main client of the wavelength-division multiplexing (WDM) layer. For this reason, before WDM protection schemes were defined, SONET protection mechanisms were mainly adopted to guarantee optical network survivability. When the WDM layer was created, the optical networks survivability techniques in consideration were mainly based on many elements of SONET protection in order to ensure maximum compatibility with the legacy systems (SONET systems). Hence some of the WDM-layer protection techniques are very similar to SONET/SDH protection techniques in the case of ring networks.
In the case of a link or network failure, the simplest mechanism for network survivability is automatic protection switching (APS). APS techniques involve reserving a protection channel (dedicated or shared) with the same capacity of the channel or element being protected. When a shared protection technique is used, an APS protocol is needed to coordinate access to the shared protection bandwidth. An example of a link-based protection architecture at the Optical Transport Network layer is a Bidirectional Line Switched Ring (BLSR). In a BLSR, every link can carry both the working and backup traffic at the same time and hence does not require backup links. Unlike a UPSR (see SONET), in a BLSR, under normal circumstances, the protection fiber is unused and this is beneficial to ISP’s since they can use the protection fiber to send lower priority traffic (using protection bandwidth) like data traffic and voice traffic.