*** Welcome to piglix ***

Primitive polynomial (ring theory)


In algebra, the content of a polynomial with integer coefficients (or, more generally, with coefficients in a unique factorization domain) is the greatest common divisor of its coefficients. The primitive part of such a polynomial is the quotient of the polynomial by its content. Thus a polynomial is the product of its primitive part and its content, and this factorization is unique up to the multiplication of the content by a unit of the ring of the coefficients (and the multiplication of the primitive part by the inverse of the unit).

A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial.

Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of two polynomials are, respectively, the product of the contents and the product of the primitive parts.

As the computation of greatest common divisors is generally much easier than polynomial factorization, the first step of a polynomial factorization algorithm is generally the computation of its primitive part–content factorization (see Factorization of polynomials § Primitive part–content factorization). Then the factorization problem is reduced to factorize separately the content and the primitive part.

Content and primitive part may be generalized to polynomials over the rational numbers, and, more generally, to polynomials over the field of fractions of a unique factorization domain. This makes essentially equivalent the problems of computing greatest common divisors and factorization of polynomials over the integers and of polynomials over the rational numbers.


...
Wikipedia

...