*** Welcome to piglix ***

Robust measures of scale


In statistics, a robust measure of scale is a robust statistic that quantifies the statistical dispersion in a set of numerical data. The most common such statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional measures of scale, such as sample variance or sample standard deviation, which are non-robust, meaning greatly influenced by outliers.

These robust statistics are particularly used as estimators of a scale parameter, and have the advantages of both robustness and superior efficiency on contaminated data, at the cost of inferior efficiency on clean data from distributions such as the normal distribution. To illustrate robustness, the standard deviation can be made arbitrarily large by increasing exactly one observation (it has a breakdown point of 0, as it can be contaminated by a single point), a defect that is not shared by robust statistics.

The most familiar robust measures of scale are the interquartile range (IQR) and the median absolute deviation (MAD). The IQR is the difference between the 75th percentile and the 25th percentile of a sample; this is the 25% trimmed range, an example of an L-estimator. Other trimmed ranges, such as the interdecile range (10% trimmed range) can also be used. The MAD is the median of the absolute values of the differences between the data values and the overall median of the data set; for a Gaussian distribution, MAD is related to σ as (The derivation can be found here).


...
Wikipedia

...