*** Welcome to piglix ***

Interquartile range


In descriptive statistics, the interquartile range (IQR), also called the midspread or middle 50%, or technically H-spread, is a measure of statistical dispersion, being equal to the difference between 75th and 25th percentiles, or between upper and lower quartiles, IQR = Q3 −  Q1. In other words, the IQR is the 1st quartile subtracted from the 3rd quartile; these quartiles can be clearly seen on a box plot on the data. It is a trimmed estimator, defined as the 25% trimmed range, and is the most significant basic robust measure of scale.

The interquartile range (IQR) is a measure of variability, based on dividing a data set into quartiles. Quartiles divide a rank-ordered data set into four equal parts. The values that separate parts are called the first, second, and third quartiles; and they are denoted by Q1, Q2, and Q3, respectively.

Unlike total range, the interquartile range has a breakdown point of 25%, and is thus often preferred to the total range.

The IQR is used to build box plots, simple graphical representations of a probability distribution.

For a symmetric distribution (where the median equals the midhinge, the average of the first and third quartiles), half the IQR equals the median absolute deviation (MAD).

The median is the corresponding measure of central tendency.

The IQR can be used to identify outliers (see below).

The quartile deviation or semi-interquartile range is defined as half the IQR.


...
Wikipedia

...